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Abstract 

We present a framework for the study of bodies wherein the deformation gradient may suffer 
a jump across an evolving nonmaterial interface. To formulate the kinematics relevant to such a 
situation, we use a global approach in which the configuration space has the structure of an infinite 
dimensional bundle. We show that a force, defined as an element of the cotangent bundle of the 
configuration manifold, may be represented by bulk and interfacial stress measures. The invariant 
decomposition of that force into bulk and interfacial components is discussed and we show that, in 
the case where the stress measures representing the force are given in terms of smooth densities, 
such a decomposition is determined by the average stress on the interface. 
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1. Introduction 

This paper presents a geometric framework for the mechanics of multiphase bodies 
- that is, deformable continua containing moving nonmaterial surfaces across which the 
deformation, though continuous, suffers a discontinuity in its gradient. In considering such 
bodies, we are motivated by recent theories for solid-solid phase transitions developed 
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by Gurtin and Strutbers [l] and Gurtin [2,3], theories that involve a highly nonstandard 
treatment of forces. ’ Specifically, our goal is to provide an alternate perspective in which 
certain hypotheses of Gurtin and Struthers arise as consequences of the underlying geometric 
structure. 

Given a multiphase body, we restrict attention to the case in which the differential topolog- 
ical structure of the surface across which its deformation gradient jumps remains constant. 
In other words, we assume that there exists a two-dimensional manifold, termed the infer- 
face, and that the various surfaces of discontinuity, termed configurations of the interjke, 
are diffeomorphic to it. While any embedding of the interface in the body induces a config- 
uration of the interface, any two embeddings that have the same image will induce the same 
configuration of the interface. Thus, the collection of configurations of the interface in the 
body is a manifold of borders or a manifold of shapes as considered by Kijowski and Ko- 
morowski [8], Komorowski [9], Michor [lo], and Binz and Fischer [ 111. In the terminology 
of continuum mechanics, the interface lacks material structure. 

To overcome the difficulties associated with the lack of material structure we use a general 
formulation of continuum mechanics suggested in [ 12,131. Specifically, we consider an 
infinite dimensional manifold structure for the configuration space of the body. Generalized 
velocities and forces are then defined, respectively, as elements of the tangent and cotangent 
bundles of the configuration space. Being linear functionals, the representation of forces 
therefore depends on the class of admissible mappings. Natural choices of the admissible 
mappings and topology allow a representation of forces by measures and an associated 
generalization of the notion of stress. We note that this approach holds in the case where 
both the body and the underlying physical space are general differentiable manifolds, and 
leads, without any reliance on the notion of equilibrium, to proofs of the existence of stress 
in the case where it may be as irregular as a measure and also an elucidation of certain 
properties of stress. 

Letting QK denote the collection of configurations (of the body in space) that suffer a 
discontinuity of the derivative at the configuration K of the interface, the configuration space 
of the multiphase body is, in our setting, just 

where Ql is the configuration space of the interface. To apply the approach described above, 
we take advantage of results due to Kijowski and Komorowski [8] and Komorowski [9] - 
who work in a context similar to ours - and show how Q may be given the structure of a 
bundle. For the Coo case, Q is smooth. For the Co case, with o finite, T Q possesses the 
structure of a topological Banach manifold (see [9]). 

Ideally, a theory for multiphase bodies should lead to a natural decomposition of gen- 
eralized forces, and possibly velocities, into components associated with the interface and 
the bulk. In fact, we are able to - on the basis of a physically well-motivated constitutive 
assumption-construct a connection on the cotangent bundle that allows a decomposition of 

’ See also the related work of Leo and Sekerka [4], Pitteri [S], Pfenning and Williams [6], and Lusk [7]. 
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forces into interfacial and bulk components. Regarding generalized velocities as elements 
of the double dual, the decomposition of forces then allows a generalized decomposition of 
the velocities in which the bulk component is the velocity field of material points. More- 
over, we show that, so long as the stress measures representing a force are given in terms of 
smooth densities, a natural decomposition of the force is available. In this case, the force f 
on a multiphase body has the representation 

f(i) = (s.V+S.DY)dV + (n,.[SoDx(n,)Jti fcti +c.Dti)dA. 
s s 
B K 

Here, v is the velocity field of the material points, ti is the scalar normal velocity of the 
interface, s is a vector field representing the ambient bulk-force (which vanishes in equilib- 
rium), S is a tensor field representing the bulk stress, x is the configuration of the multiphase 
body, c is a real function on the interface representing the ambient interfacial-force, c is 
a vector field that represents interfacial shear, rzK is the interfacial unit normal field, and 
double-brackets denote jumps of the enclosed quantities across the interface. The represent- 
ing stress measures are not determined uniquely by the force; if, however, they are given, 
the force may be restricted to any subbody P of B by restricting the integrals appropriately. 
Doing so, the restriction fp of f to P may be represented in the form 

where t[ = c. u is the interfacial boundary force, Y is the unit normal to 8P fl K on 
K, angled double-brackets denote the average of the enclosed object on the two sides of 
the interface, b = s - divS is the bulk body force, t = S(nap) is the bulk boundary 
force, fK = [S(n,)J is the force exerted on the interface by the adjoining bulk phases, and 
t = c - div, c + tK . ((Dx (K))) is the component of the force dual to the normal interfacial 
velocity field. While the contact forces for a generic subbody P depend on the representing 
stress fields, the contact and body forces for B depend only on f. 

This representation together with the ensuing “balance equations” and “boundary condi- 
tions” are analogous to those postulated by Gurtin and Struthers [ 11, with the difference that 
our framework, which ignores energetics, precludes any discussion of interfacial tension 
(or, more generally, interfacial energy). 

For the sake of completeness, Section 2 of the paper reviews the mechanics of nonma- 
terial interfaces (based on [ 141). Section 3 discusses the mechanics of composite bodies - 
multiphase bodies for which the interface remains fixed. Nonmaterial surfaces and com- 
posite bodies are basic elements in the development of the mechanics of multiphase bodies, 
whose kinematics and force theory are considered in Sections 4 and 5, respectively. In Sec- 
tion 6 we consider the decomposition of forces into interfacial and bulk components and 
Section 7 presents the important example in which the stresses are given by smooth densi- 
ties. Since we rely on the constructions of Kijowski and Komorowski for the configuration 
spaces, some proofs are omitted for the sake of conciseness. 
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Our adherence to the use of P’ topologies, instituted by Kijowski and Komorowski [8] 
and Komorowski [9] in their constructions of infinite dimensional manifolds of mappings, 
is suitable to exhibit the geometrical structure and the framework for force and stress theory. 
By no means do we expect that such topologies would be adequate for the discussion of 
the partial differential equations governing multiphase bodies. Indeed, to arrive at those 
partial differential equations would require constitutive equations determining the stresses 
as functionals of the underlying kinematic variables. Analysis of the ensuing partial differ- 
ential equations would rest on an investigation of regularity issues and the introduction of 
appropriate solution spaces (e.g., adequate Sobolev spaces). 

2. Review of the mechanics of nonmaterial interfaces 

The kinematics and force theory for nonmaterial surfaces, discussed in [ 141, are basic in- 
gredients in the formulation of the kinematics and force theory for multiphase bodies. Thus, 
for the sake of completeness we present in this section the relevant definitions, methods, 
and results of [ 141 and the references cited therein. 

Definition 2.1. A body, B, is a compact three-dimensional P, w = 1, . . . , 00, manifold, 
with boundary 6’B, that can be embedded in R3. 

Definition 2.2. An inte$zce, I, is a compact orientable Co surface in R3. 

Definition 2.3. A configuration, K, of an integace I in a body B is a submanifold K of the 
interior, Int(B), of B that is Co diffeomorphic to I. We use Ql to denote the collection of 
all configurations of I in B. 

Definition 2.4. For X E K E Ql, the space of Zayers at X is the quotient space AXK = 

TX B/ TXK. The one-dimensional vector bundle 

AK = u LtxK 

XEK 

with projection h,: AK -+ K, will be referred to as the bundle of layers. 

Proposition 2.1. (Komorowski [9], Kijowski and Komorowski [8], Michor [lo], Binz and 
Fischer [ 111). The interfacial conjiguration space QI can be endowed with the structure of a 
manifold modeled on the topological vector space Co(I) of realfunctions on the intelface. 
For any K E Ql, we have an isomolphism TK QI = P(h,), where C”(A,) is the space of 
Cw sections of AK. 

Remark 2.1. The construction of the manifold structure uses a deformation of K E Ql in 
a tubular neighborhood containing it. A real valued function u defined on K (or Z) can, by 
displacing the point X E K to the point in the body whose tubular-neighborhood-coordinates 
are (X, u(X)), represent a neighboring configuration of the interface. 
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Remark 2.2. Given a metric (induced, for example, by a reference configuration of B in 
R3) on B, we will often identify ti with its component relative to the unit normal vector 
to K so that P’(h,) may be identified with P(K), the collection of real functions. In this 
case, the section of h, representing an element ti E TK Qt is called the normal velociqfield 
associated with ti. 

Consistent with the general framework described in the introduction, forces on K are 
elements of the cotangent space (T, Qt)* = (P(h,))*. As such, forces are section distri- 
butions (see [15-171) and, since K is compact, forces are of finite order. 

Definition 2.5. Given k finite, a force of order k on an evolving inter$ace, i.e. an accretive 
force of order k, at the configuration K of I is an element of ( Ck (h, ))*. 

Remark 2.3. We use the term accretive in the sense of Gurtin and Struthers [l]. who 
employ that term to distinguish forces associated with the motion of a nonmaterial interface 
- whereby material of one phase grows at the expense of another - from the more standard 
Newtonian forces associated with the motion of material particles. 

For simplicity, we restrict attention, in the remainder of this section, to forces of order 1. 

Proposition 2.2. Any accretive force f E (C’ (h,))* admits the representation 

f(a) = j(k). dS, 
s 
* 

where j: C’(A,) + C’(J(h,)) is the jet extension mapping and 8 is a measure over K 

valued in J(i,)*, the dual of the jet bundle of the vector bundle h,. For sections e of a 
vector bundle andf of its dual, e f denotes the real function f (X) (e(X)). Further iff is a 
measure valued in the dual bundle, e.f is the analogous real measure. The measure 6 is 
referred to as the interfacial stress. 

Remark 2.4. In analogy to the usual situation in continuum mechanics, a force on I does 
not determine a unique stress on I. If a force system - i.e., a force on every submanifold of 
K - is given and certain consistency conditions hold, a method due to Segev and de Botton 
[ 1 X] can be used to show that a unique stress may be determined. 

If a stress E representing the accretive force f E Cl (A,)* is given, a force fs of 
order 1 is induced on any two-dimensional submanifold S of K by 

fs(ti) = 
s 

j(k). d%. 

S 

Proposition 2.3. Given a Riemannian metric on B, any accretive force f E C ’ (kc )* may 
be represented in the form 
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f(a) = / ti dt + / Die. ds” 
K K 

for all ti E C’ (A,), where D denotes the dt$ierentiation operator, e is a real valued measure 
over K, and s” is a measure over K valued in TK. We will refer to the measure 4 as the 
ambient (self) accretive force measure and to Z as the accretive stress measure. 

Proposition 2.4. Assume a Riemannian metric is given on K. Then, every accretive force 
f E C’ (A,)* at the configuration K of I can be approximated with arbitrary accuracy by 
the smooth real function c over K, the ambient accretive force field, and the smooth vector 
field c tangent to K, the accretive shear field, via 

f(a) 2 
s 

(cti+c.Dti)dA, 
K 

where A is the area measure on K. If c and c are given, then, the force fs for a two- 
dimensional submanifold with boundary S of K is provided by 

fs(ti) =/b,udA+/ttudL, 

s as 

where div c + bt = c on S and c . u = tt on 8 S. Here, u is the unit normal on K to a S. The 
field bt is the accretive body force field and thefield tI is the accretive boundary force. 

3. Kinematics and force theory for composite bodies 

Before considering the case of an interface that is an evolving nonmaterial surface of 
discontinuity in the deformation gradient, we discuss the theory of forces for composite 
bodies - that is, bodies that contain a material interface across which the deformation 
gradient may jump. 2 

Definition 3.1. A composition of a simple body B is a collection of m connected subbodies 
{BP), P = 1, . . . . m, called phases, whose union is B and whose interiors are mutually 
disjoint. A composite body is a body B together with a decomposition of B. 

Remark 3.1. Our usage here of the noun “phase” deviates somewhat from what is standard. 
Using that term in its traditional physical sense, two disconnected regions in a body may 
be composed of the same “material phase”. As we do not consider material properties 
here, any indication that two disconnected subbodies are composed of the same “material 
phase” is irrelevant. Hence, to yield a unique decomposition of the body into phases, we 
require that the phases be connected. Our “phases” may be thought of as “phase connected 
components”. 

2 Here, our approach is based on an example discussed by Segev [ 191. 
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Remark 3.2. Clearly, the common boundaries in a decomposition of a body B constitute 
a configuration of an interface in B. In addition, a configuration of an interface in the body 
generates a decomposition of B. 

Definition 3.2. A composite configuration of a composite body B with decomposition 
(BP] is a continuous mapping y : B + lR3 that satisfies the following conditions: 

(i) For each p, the restriction yI,+ is a Cw embedding of B, in R3. 

(ii) If 8 B, n 3 B, # 0. p > q, the jump of the gradient [Dyn,“. defined on 8 B, n 8 B, by 

IIDyll,” = D(yl,J - WYI,~), 

is nonzero at each point on the common boundary. 
(iii) The mapping y is injective. 

Remark 3.3. We recall that the requirement thaty is continuous implies that [[Dy(e)J$ = 0 
for every vector J! tangent to the common boundary. 

Proposition 3.1. The configuration space QK of the composite body, i.e., the collection of 
all composite conjgurations, is a Banach manifoldfor a finite w and otherwise is a Frechet 
manifold. The tangent space T, QK to the configuration space at any configuration y may 
be identi$ed with 

TK = {v E Co@, R3): v(+ E Co@,, R3)), 

with the topology on TK deJned using the standard Cw seminorms on the various phases. 

ProofI Let FK = &, C”(B,, R3) be equipped with the product of the topologies on 

C”(B,, R3) forp = 1,. . . , m and consider the mapping 1: TK -+ F, given by l(v) = (VI, ). 

Since the configuration space QP = EmbW ( BP, R3) of each phase p is open in Cw (B,, lR3) 
(see [ 10,20]), it follows that HP QP is open in f,. Further, since the mapping 1 is continu- 

ous, the inverse image 1-l (&, QP), which is the collection of mappings of the body into 
space that satisfy condition (i) of Definition 3.2, is open in TK. We omit the proof that the 
collection of mappings consistent with (ii) and (iii) is open in TK. 0 

Remark 3.4. Appealing to Proposition 3.1, we may, for the various y E QK, identify 
(TYQK)* with (TK)*. 

Definition 3.3. A composite-body force f of order w on a composite body at the configu- 
rationy is an element of (T, QK)*, the dual to the tangent space. 

Proposition 3.2. Every force f E T,* can be represented by a collection { fp), p = 
1 , m, with fp E C”(Bp, R3)*, 

f6;‘= C, fp@l,), forallj E TK. 
in the form f = l*(fl, . . . , f,,,), or alternatively, 

Prooj The proof follows directly from the fact that L is a linear, continuous injection. ??
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Remark 3.5. Since (Tyls, Qp)* = Cw(B,, R3)*, werefertothevarious fp asphaseforces. 

Remark 3.6. Since the mapping 

1: T, = TYQ -+ T; = n CW(B,, R3) = n TYi,Q, 
P P 

of Proposition 3.1 is not surjective (due to the compatibility (i.e., continuity) constraint), 
its dual mapping, 

1*: flU&, Q,c,* = n C”(Bp, R3)* --+ VyQp)* 
P P 

is not injective. Thus, while any force on the composite body may be represented by a 
collection of simple body forces for the various phases, this representation is not unique. 
In particular, at the interface, a regular force system will not provide the ambient forces for 
the distinct phases, but only their sum. (The situation here is similar to that considered in 
Remark 2.4.) 

Remark 3.7. Since each BP is compact, any element f,, E C”( B,, R3)*, being a distribu- 
tion with compact support, is of finite order even for the case w = co. Thus, there is a finite 
k such that fp E @(BP, R3)* for all p = 1, . . . , m. For simplicity, we restrict ourselves 

to the case k = 1. The next two propositions consider representations of such forces by 
measures. 

Proposition 3.3. Every force f E (TK)* can be represented by a collection of measures 

{(a,, XP)}, p = 1, . . . , m, in the form 

f 0) = s spIB, ~do,+~/Wjl,Wp 

BP 
p=l 

BP 

for all j E TK. Here, the measures up are valued in Iw3 and will be termed the ambient 
(self) force measures, and the measures Ep are valued in L(R3, R3) and will be termed 
the stress tensor measures. 

Prooj The proof follows immediately from the representation of the various elements 
fp E C’(B,, R3)* by measures (see [18]). ??

Remark 3.8. The representation of a phase force by an ambient force and a stress mea- 
sure is, as discussed in [ 181, not unique. This nonuniqueness compounds that discussed in 
Remark 3.6. 

Proposition 3.4. Assume that a reference conjiguration of the composite body in space is 
given and identify the body with this reference configuration. Assume, also, that the self- 
forces up and stress tensor measures Xp that represent a composite force f of order 1 
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are given, respectively, in terms of densities sp and S, smooth with respect to the volume 
measure on B. Then, for each j E TK, f admits a unique representation 

fiv)=Sb.jtdV+St.gdA+St~.jrdA 

B 8B K 

in terms of (piecewise) smoothjelds b, t, and t, dejined by 

b = sp - div S, on B,, 

t = S,(naB) on i3B n B,, 

tK = USOk)ll OnK, 

where ES] is computed using a particular orientation of the interfacial normal. 

Proofi The proof follows directly from Proposition 3.3 and Gauss’s theorem. 0 

Remark 3.9. The forces tK are those that act on an interface separating the components of 
a composite body. We may compare these with those derived by Gurtin and Murdoch [2 1 ] 
in their investigation of the mechanics of material surfaces. We note that we are missing 
a term corresponding to deformational surface stress. Within our framework, such terms 
will arise if we either consider the interface as a two-dimensional body embedded in B or. 
alternatively, consider forces of order 2. 

In light of Remark 3.6, we now discuss the resolution of the nonunique representation of 
composite body forces by phase forces. 

Definition 3.4. A system of phase forces is a right inverse 

r: (TyQp)* + fl(TylBp~p)* = n CW(Bp, R3)* 
P P 

ofl*,providingtheset (fp = r(f)plp = l,..., m}, fp E (TYQp)* for any composite 
body force f E (TYQp)*, so that 

I*(r(f))(j) = Cr(f)p(ilBp) = f(f). 
P 

Remark 3.10. The specification of a system of phase forces allows the restriction of a 
force on a composite body to some of its subbodies, i.e., the phases. This situation is similar 
to that encountered when the specification of a stress field allows the restriction of a force on 
a simple body to all its subbodies. Hence, as the specification of a stress field corresponding 
to a given force is achieved using constitutive assumptions, we regard the specification of 
a system of phase forces as a constitutive assumption. In Section 7 we show that in the 
standard case when the stress measures are represented by smooth densities with respect to 
the volume measure on the composite body - so that a force f is specified uniquely in terms 
of b, t, and tK , the additional information required to specify r(f) is the average value of 
the stress across the interface. 
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4. Kinematics of multiphase bodies 

We now combine the situations described in Sections 2 and 3 and consider a body contain- 
ing an evolving surface of discontinuity in the deformation gradient. Thus, a configuration 
of the body is a composite body configuration where the surface of discontinuity is no longer 
material. 

Definition 4.1. Let I be an interface and B a body. A (coherent) multiphase con$guration 
of B consists of a configuration K E QI of the interface and a composite body configuration 

x E Qtc. 

Since a configuration of I in B induces a decomposition {BP} of B, whenever we mention 
a decomposition in the sequel, we mean the decomposition induced by the configuration of 
the interface at hand. 

Definition 4.2. The multiphase conJiguration space of a body B with an interface I is 

Q= u QK. 
KEQl 

The natural mapping n : Q -+ QI, which we refer to as the conjiguration space projection, 
assigns K = n(x) to every x E QK. 

Proposition 4.1. The multiphase configuration space of a body B and an integace I 
possesses the structure of a$ber bundle. 

Definition 4.3. Let N: KO x R + W C B be a tubular neighborhood of KO in B. A 
dragging of the domain B along N is a differentiable mapping S: U + Diffw( B), with 
U c P’(Ko) adomain of achart $: U -+ QI, $(u) = {N(X, u(X))/ X E KO) containing 
~0, that satisfies 

(i) 6(u)(X) = N(X, u(X)) for all X E ~0, 

(ii) 6(O) = lo, 
(iii) S(u)(X) # X only in a neighborhood of KO contained in W. 

Overview of the proof of Proposition 4.1. Roughly, by artificially “deforming” the 
body in the configuration KO of the interface so that KO is taken to K, a dragging of the domain 
allows the identification of QK, K = S((KO}), with QK, so long as K is in a neighborhood 
of ~0. Such an artificial deformation allows identification of composite body configurations 
possessing singularities on K with composite body configurations possessing singularities 
on ~0. Kijowski and Komorowski [8] and Komorowski [9] show that for any configuration 
KO and any tubular neighborhood N there is a dragging S of the domain. We will outline the 
construction of the fiber bundle charts on Q. Let KO be a configuration of the interface, N 
be a tubular neighborhood of KO. (U, $I> be the induced chart in QI, and 6 be a dragging 
of the domain. For xo E QKO and u E U, we consider the mapping x: B -+ Iw3 given by 

x(X) = xo(&-l(X)). Ob viously, x is a multiphase configuration of B whose gradient 
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is not continuous on K = +(u); hence, x E QK. We define 9: U x QK, + n-‘(Q(U)) 
by @(u. xu) = xo o S(u)-‘. Since for any u, 6(u) is a diffeomorphism of B, the mapping 
9(u, .) is adiffeomorphismof QKO with QK, K = Q(u). Thus, the mapping !P: U x QK, + 
rr -’ (q(U)) generates a local trivialization of the neighborhood rr -t (e(U)) in Q. fl 

Remark 4.1. Additional geometric insight into the local representation of multiphase 
configurations using a dragging of the domain results from regarding the configuration 
x : B + Iw3 as a section (1, x): B + B x [w3 of the trivial fiber bundle prt : B x [w3 + B. 
We note that ify E QK,, represents the configuration x E QK, the fact thaty = x o 6(u). 
with u being the representative of K and 6(u): B + B, implies that in general the mapping 
(S(u),y) = (1, x) o 6(u): B -+ B x [w3 is no longer a section. The advantages of using 
(S(u), y) are that it represents both x and U, its two components are independent. and it has 
fixed singularities. 

B x [w3 = B x [w3 
16(U).Yl f t (1.X) 

6(U) 
B - B 

Just as elements of TK QJ can be represented invariantly by sections of the bundle of layers, 
it is possible to represent elements of T, Q via sections of a vector bundle. 

Definition 4.4. Given x E Q, define an equivalence relation e on F”(B, T B) x TK, 
K = n(x), such that (dt,et)e(&,e2), di E CW(B, TB), ei E TK, when the difference 
@z(X) -dt(X),e~(X) -et(X)) is tangent to (1, x)(B) for any X E B and tangent to 
(l,x)(~)atanyXE~.WesetCT= (C”(tg) x TK)/er where 58: TB + B is the tangent 
bundle projection and C”(TB) is the space of Cw tangent vector fields on B. 

Proposition 4.2. The tangent space T, Q is isomorphic to cy. 

Proofi See [9]. 0 

Definition 4.5. Let m: [w -+ Q be a motion of a multiphase body B and for t E R let 
{BP) be the decomposition of B at the configuration m (t ). The material velocity v(X)(t) of 
X E B, at t E R is given by 

Wd(X) 
v(X)(t) = as . 

S=t 

Below we discuss whether the material velocity is well-defined for a given X E B. 

Proposition 4.3. Let m: Iw + Q be a motion such that m(0) = ~0 E QK,. Let the tangent 
to this motion at ~0 be represented by (ti, j) E COO(KO) x TK,, in a chart constructed using 
a dragging 6 of the domain. Then, the material velocity at X E B, is given by 

v(X)(O) =9(X) - D(xoI,,)(X)(WW)(X)). 
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ProojI The proof follows immediately upon differentiation of the expression for the repre- 
sentation in a chart of Proposition 4.1 with respect to the parameter t. ??

The local representation obtained in Proposition 4.3 leads to the following result, the 
proof of which is omitted for brevity. 

Proposition 4.4. Let Q containpiecewise Ck conjigurations of the m&phase body. Then, 
there is a continuous linear mapping 

s: T,,,Q -+ l-j &‘(Bp, u@) 
P 

with [Bl, . . . , B, J the decomposition of the body B induced by KO = n (x0), such that ij 
X E BP, then q(x)(X) = v(X)(O). H ere v is the material velocity$eld corresponding to 
any motion m, such that m(0) = x0 E QKo, that represents the tangent vector x E Tx, Q . 
The mapping CJ is injective and its image is closed. 

Definition 4.6. Given i E T,, Q, we will refer to v = q(i) as the material velocity 
fieZd corresponding to j. We will denote the pth component of q(k) by ip. Although at 
each point on the interface a BP fl8 B, there are, in general, two distinct values of material 
velocity (depending on whether the limit is taken from the interior of BP or that of B,), we 
will, when no confusion can arise, commit a notational transgression and treat v = q(j) as 
afieldon B. 

Proposition 4.5. Let x E Tx, Q be represented under a chart constructed using 6 about the 
conjiguration Kg = n(xo) by (0, x0, u, j) (as x0 is represented by (0, x0) in the chart about 
KO). Then, the jump, Uv@ = (Iq(x)Jt, of th e material velocity jeld across a boundary 
between phases is given, for each X E ~0. by 

lIvll,p(X) = -UDxo(X)ll,P(W)(u)(X)) = -lIDxo(X)ll,P(N,2(X))u(X). 

where, N,2 is the vectorjeld KO + T B IKO tangent to the “tubular neighborhood lines” at 
Kg, z.e., 

N,2W = $‘W, ~)l~,~. 

Proo$ The proof follows directly from Proposition 4.3 and the properties of 6. 0 

We note that a metric is naturally induced on the body B by its embedding x0 in R3. 
Hence, we use the normal bundle to generate a tubular neighborhood in a neighborhood 
of KO. It follows that N,2(X) = n,(X), with nK the unit normal to ~0. and that ti is the 
component of the normal velocity field along the unit normal. Thus, the following familiar 
corollary holds. 

Corollary 4.1. Let n, denote the normal to KO = x(x0). Then, the kinematic relation 
[[v# = -OIDXo(n,)j#ti must hold. 
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In addition to the tangent bundle projection TQ: T Q + Q, we consider the tangent 
Tn: T Q -+ T QI to the bundle projection rr. This mapping gives the generalized veloc- 
ity of the interface associated with a generalized velocity of the multiphase body. In the 
language of geometry, generalized velocities for which the associated velocity of the in- 
terface vanishes - i.e., elements j E TQ such that TX(~) = 0 E Tn(sp(io)Q, - are 
the vertical tangent vectors. We will use VQ to denote the vertical subbundle of T Q. 
i.e., 

VQ= u T(Q,)= u Q,vxT,, 
KEQl KEQl 

while i: V Q --+ T Q will denote the inclusion of the vertical subbundle in the tangent of 
the bundle Q. 

When Q is a general bundle, we observe that an invariant decomposition into the third 
and fourth factors of an element w E T Q is impossible. While the third factor is defined 
invariantly by means of Tn, there is generally no invariant method of extracting a vertical 
vector from 2. 

5. Forces and stresses for multiphase bodies 

In Section 4 a typical tangent space TX Q was identified with the space c: containing 
equivalence classes of vector fields defined on B and taking values in T B x T R3. Thus, 
we can make the following definition. 

Definition 5.1. A multiphase force f of order w on a multiphase body at the multiphase 
configuration x is an element of (TX Q)* = (c,W)*. 

Remark 5.1. As before, explicit mention of the value of w will be avoided whenever 
that value does not influence the discussion. Again, if w is infinite, the fact that B and I are 
compact implies that f is a distribution of finite order; only that order is not known a priori. 

Remark 5.2. For a given trivialization q’, by the local representation of elements of TX Q 
in the form (li,j) E C”(K) x T,, a force f E (TX Q)* can be represented in the form 
(0. g) E P(K)* x T,*. The virtual power, therefore, admits the local representation 

f(f)=W)+gC.$‘), X E TxQ, 

where 8 is the accretive local component of the force under the given trivialization P, and 
g is the bulk local component of the force under @. 

To obtain the transformation rule for the accretive and bulk local components of the force 
we consider two charts +i, @i, i = 1, 2, SO that we have representations (ui , yi, /ii, ji) 
of a generalized velocity and representations (Ui, yi, 19i, gi) for the associated force. Hence, 

-1 setting h = I++~ 01Crl:li1~li2andH=pr~oly,-‘oyl:(~l,~l)~~2,wehave 
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f(i) =&Cal> +s1u1> 

= 02ca2> + 8202) 

=~2(MW) + g2(K,W + K2U1)) 

= (62 0 Dh + g2 0 Hl)@l) + g2 0 ff,201)9 

where, H, 1 and H,2 are the respective partial derivatives of H. The transformation rules for 
the accretive and bulk local components of the force are therefore 

81 = 02 0 Dh + g2 0 H. 1. gl = g2 0 H,2. 

While the bulk local component of a force is an invariant quantity, the accretive local 
component of the force mixes with the bulk local component under a change of chart and, 
hence, is not an invariant quantity. Intuitively, this results from the power that the bulk local 
component of the force performs on the extension, via the dragging of the domain, of the 
interfacial velocity to the bulk. 

Remark 5.3. The bundle structure X: Q -+ Ql, implies that we have two special types 
of forces: forces on the multiphase body induced by accretive forces and forces on com- 
posite bodies induced by forces on multiphase bodies. The map T,n: TX Q + T,(,) Qt 
has a dual mapping (Txn)*: (T,(,)QJ)* + (TX Q)* so that if g is an accretive force for 

the configuration K of the interface, (T,n)*(g) is a force on the multiphase body at any 
x with n(x) = K. By definition (T,n)*(g)(i) = g(T,n(i)). Thus, (T,lr)*(g) is a force 
that expends power only for the velocity of the interface. On the other hand, the mapping 
i: V, Q + TX Q, induces the dual mapping i*: (TX Q)* -+ (Vx Q)*. Since V, Q is iso- 
morphic with T,, K = rQ(x), the image of a force f on the multiphase body is a force 
on a composite body whose surface of singularity is K and i*(f)@) = f (i @)) is the 
restriction of the force to velocities of the multiphase body for which the surface of sin- 
gularity vanishes momentarily. Locally, i* has the representation (u,y, 8, g) H (u,y, g), 
with g E T,*. 

Proposition 5.1. Let f be a multiphase force of order 1 at the multiphase configuration 
x. Then, if a bundle chart is given in a neighborhood of x, f admits the representation 

f(ic)=J~.d~+~SDV,~~).d~,+Sud~+SV,u.d= 

B p=l 
BP K K 

with j E TX Q, (u, j) the representatives of 2 in the given chart, 6 and B measures over K 

valued in [w and TK, respectively, u a measure over B and valued in Iw3, and .Ep a measure 
defined on BP (for p = 1,2, . . _ m) and valued in L (rW3, W3). 

Proof We simply combine the representation procedures for accretive forces (Proposition 
2.3) and composite body forces (Proposition 3.3) together with the representation by accre- 
tive and bulk local components of Remark 5.2. Thus, there exist measures c and c” over K 
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valued in R and TK, respectively, such that, 8, the accretive local component of the force is 
represented by 

O(U)=~tid~+~V~ti~d,Z. 

K K 

Similarly, there are measures Ep, p = 1, 2, . . . , m defined on BP and valued in L(R3, R3) 
and a measure CY over B valued in R3 such that, g, the bulk local component of the force is 

R6’) = 
s 

i. du + 2 DC&J. dE,, 
p=l s 

B BP 

which establishes the proposition. Cl 

Remark 5.4. The representation of forces of order 1 by measures makes it possible to 
restrict the force to measurable subsets whenever the representing measures are given. Thus 
for the given representing measures we define 

fp(x)=/Fd~+e / D@l,,).dE,,+ / tide+ 1 V,ti. dZ. 

P ‘=‘BpnP KllP Kl-lP 

Proposition 5.2. Assume that the body is identijed with a given reference configuration 
and that the measures .$, c”, u, and EC, are given respectively in terms of densities c. c, s, 
and S, smooth with respect to the area measure on K and the volume measure in B. Then, 
a force f of order 1 admits the representation 

f (2) = 
1.’ s s 

b ydV + t.jdA + Q.tK + blti)dA, 

B as K 

where bl = c - div c denotes the accretive local component body force, b = s - div S, on 

BP, t = Sp(naBp) on aB fl BP, and tK = [IS(n,)] on K (with the jump computed using a 
particular orientation of n,). 

ProoJ The proposition follows immediately from the corresponding situations for evolving 
interfaces and composite bodies. 0 

Corollary 5.1. If the representing measures are given in terms of smooth densities, the 
restriction of the force f (of order 1) to the subbody P is represented by 

f,(X,=/b$dV+/t.fdA+/1,.4.dA+ 1 bItidA+ / t[tidL, 

P ap K KflP amp 

with tI = c. v the accretive surface force, b = s - divSI, in BP fl P, t = S,(nap) on 
i3PnB,,andt,=[S(nK)lJonPnK. 
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6. Tbe decomposition of forces into bulk and accretive components 

The discussion of Remark 5.2 makes it clear that, at this level of generality, there is no in- 
variant way to decompose a force on a multiphase body into accretive and bulk components. 
Granted an invariant decomposition of the velocity 2 into ti, a generalized interfacial veloc- 
ity, and 3, a generalized composite body velocity, a decomposition of force can, however, 
be obtained. Such a decomposition is a connection on the bundle Q. 

For a given x E Q with n(x) = K, we have, recalling that i is an injection and Txlr is a 
surjection, the diagram 

V,Q -1-, T,Q TX”, &QI, 

in which im i = ker Txr. A connection is specified by means of an injection r: TK Ql -+ 

TX Q satisfying TX n o r = 1. The mapping r will be referred to as the connection mapping. 

Using charts, the connection mapping can be represented in the form ti H (ti, yx (ti)), where 
yx is a mapping defined on TK Qt. The connection mapping induces a mapping A: TX Q + 

V, Q given by A = 1 - r o Txn. We refer to A as the vertical projection induced by 
r. In terms of local representatives A(i) is given by (O,j - vx(ti)), where (li,j) are the 
representatives of 2, so that A(i) is indeed in the vertical bundle. We note that A o i = 1, 
im r = ker A and that A is surjective. The situation is illustrated in the diagram: 

V,Q ---k T.rn 
T,Q + TKQI 

II II II 
V,Q A r 

T,Q + TKQI 

It follows that (Txn, A): TX Q + TK Ql x V, Q, whose inverse is r + i, is the required 
decomposition of the tangent space. The decomposition of the tangent space in terms of the 
connection mapping induces a decomposition of the cotangent space - the space of forces - 
using the duals of the corresponding mappings. Thus, if a connection mapping is available 
we have the diagram: 

W,Q)* A V,Q)* 
(T,n)' - &QI>* 

II II II 
(V,Q)* d* (T,Q)* 0’ (TK QI>* 

Here,(T,rr)*andA*areinjections,r*andi*aresurjections,im(T,n)* = keri*,i*oA* = 

1, r* o (Txn)* = 1, (1 - A* oi*)(f) E im(Txn)* for all f E (TX Q)* and (Txn)* or* = 

(1 - A* o i*). It follows that (r*, i*) : (TX Q)* + (TK Ql)* x (Vx Q)* is an isomorphism 
with inverse (Txn)* + A* so that 

f(a) = i*(f)(A(g)) + r*(f)(Tzn(j)). 

Note that the situation is completely analogous to that involving T Q, except that the 
various mappings have reversed their directions. Therefore, to decompose forces, it suffices 
to give an injection A* : (Vx Q)* + (TX Q)* such that i* o A* = 1 and set r* = 
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(TX,)*-’ o (1 - A* o i*). The definition of r* is sensible because (1 - A* o i*)(f) is an 
element of im(Txn)*. In the case where the topological vector spaces under consideration 
are reflexive (e.g., finite dimensional spaces) it is possible to obtain r by taking the dual of 
r*, and thus to obtain a decomposition of the virtual velocities. If the relevant spaces are 
not reflexive, it is possible, by taking the dual again, to decompose the generalized velocities 
only in a generalized sense - the vertical component will be a member of (TX Q)** rather 
than of TX Q (see the following commutative diagram). 

(“,Q)** i i** (TXQ)** :rr=j** 
(TK QI)** 

II II II 
(V,Q)** d** (T,Q)** 

(rl** 
- (TKQI,** 

Definition 6.1. A local dual connection mapping at x E Q is a mapping A*: (Vx Q)* -+ 
(TX Q)* such that i* o A* = 1. Given a force f E (TX Q)*, we will refer to i*(f) as the 
vertical component of the force and to f*(f) as the horizontal component of the force. 

Remark 6.1. The foregoing discussion clearly holds for any mechanical system for which 
the configuration space has the structure of a fiber bundle n: Q + QJ and thus pertains to 
more than the mechanics of multiphase bodies. 

Corollary 6.1. In the decomposition of a force induced by a local dual connection the bulk 
(vertical) component fR of the force f is fRQ) = i*(f)Q) = f (i(j)) and the accretive 
(horizontal) component fJ in (TK QI)* of the force is given by 

ft(ti) = r*(f)(u) = ((Txn)*-’ o (1 - A* o i*)(f))(u). 

Note that, in contrast with the local representatives (0, g), we do not describe ft and ,f~ as 
“local” components of the force. 

Proposition 6.1. For the C” case, a system of phase forces (see Dejnition 3.4) 

r: (TK’)* -+ I-I cyi?,, I&)* 
P 

with r(g)(tG)) = g@), generates a decomposition offorces in (TX Q)* , with K = n(x), 

into accretive and bulk components. 

ProojY Given r we define a local dual connection mapping by setting 

A*(g)(j) = r(g)(<(j)), X E T,Q, 

where q(i) is the restriction of j into the smooth material velocity fields on the various 
phases defined in Proposition 4.4. We have 

. (i* 0 A*)(g)@) = A*(g)(i@)) = gci)>, j, E V, Q, 

so that A* is indeed a right inverse of i’. Cl 
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Remark 6.2. Since any force of a finite order is also a force of order 00, the above 
decomposition holds for the action of a (multiphase body) force of any order on piecewise 
Coo velocities. 

Proposition 6.2. If a force f is given in a chart by the components (0, g), then the bulk 
component of the force, fB, is represented by (0, g) and the accretive component of the 
force, fr, is represented by 

W> + Cr(f)p(DXIBp)(DB(io). 
P 

Proposition 6.3. Let a dual connection mapping be given by a system of phase forces r as 
in Proposition 6.1 and denote by v** the image of an element v of the Banachable space V 
under the natural inclusion V + V**. Then, 

r**(u**)(f) = fr(u) forallti E TKQr, 
L** o .**(A**) = q(j)** for all R E TX Q, 

where the second equality holds in a generalized sense, meaning that 

l** 0 A**(X**)(i) = &(ii)) = 2 ip(sWp) 
p=l 

for all i E nT=:=, (TX lBp QB,)*. 

Hence, the generalized interfacial component of the velocity is indeed the interfacial 
normal velocity and the generalized bulk component of the velocity is the material velocity 
represented as an element of (TX Q)**. One therefore obtains the expressions 

f(i) = A**(ii**)(fis) + Txr**(X**)(fi) 

=r(i*(f))(s(i)) + fr(Txn(a)). 

Propositions 6.2 and 6.3 follow from the definitions of r and the bulk and accretive 
components of the force. 

7. The case of stresses given by smooth fields 

We now present an example of the foregoing procedure for the decomposition of forces. 
The procedure is applied to the class of composite body forces of order 1 whose representing 
measures are given in terms of smooth stress densities. (In other words, the mapping r is 
defined only on a subspace of T* Q.) We emphasize that most continuum-level work on 
multiphase bodies is concerned with solely this situation (cf. [2-6]). 

Thus, identifying B with a reference configuration and fixing our attention on a fixed 
configuration K of the interface in the body, we assume that the composite body force g may 



R. Segev et al. /Journal of Geometry and Physics 20 (1996) 371-392 389 

be represented by piecewise smooth (not necessarily unique) fields s E np Cm(B,. [w”) 

and S E &, Coo(Bp, L([w3, R3)) through 

Clearly, if the stress measures u and E representing the bulk local component g of the force 
f on the multiphase body in a chart on Q may be given in terms of smooth densities s and S 
(cf. Proposition 5.2), then i* (f) may, as assumed, be represented by smooth densities. While 
the foregoing representation depends on what chart we use on Q, we note that whenever a 
stress representing the bulk local component of a force in one particular chart is given in 
terms of a smooth density, any other stress representing the bulk local component of the 
force with respect to any other chart on Q must also be given in terms of a smooth density. 

We can now define r by 

r(g)&) = s (sp.Qp + Sp.Djp) dV, jp E COO@,, R3). 

BP 

It follows that the action of the interfacial component of the force is given by 

fr(a) = e(c) + 2 /{S~.(DX~ODB(II)) +&,.D(Dx,,oDG(ti))} dV. 
p=l 

BP 

We observe that the sum on the right is the local expression for the connection mapping. It 
depends on the dragging of the domain in such a way that when combined with 8 the resulting 
power fl (ti) is invariant. Recalling (cf. Definition 4.3) that the dragging of the domain is 
supported in a tubular neighborhood of the interface and that it is possible to construct a 
dragging of the domain whose support is, in any neighborhood of the interface, contained in a 
tubular neighborhood, we may choose a sequence of draggings of the domain S; , i = 1, . ., 
such that the support of 6i is contained in the neighborhood Ei = N( {K, [ - l/ i, l/ i])). The 
left hand side of the last equation does not change with i while the last two sums approach 
a limit as will be shown below. Hence, if 0i is the local accretive component of the force f 
in the chart induced by the dragging & of the domain, then 8i (ti) approaches a limit that we 
will denote by 6. Clearly, 6 is invariant. 

We now compute the limit of the two sums using a normal tubular neighborhood. By 
the properties of the dragging of the domain, the support of D6i (ti) is also contained in the 
neighborhoodEi andD&(ti)(X) = ti(X)n,(X)foreveryX E ~.Hence,sinceD~~(Da(ti)) 
is bounded and the measure of its support tends to zero: 

lim 
i-co s 

Sp.(DXpODBi(li)) dV = 0. 

BP 

From the assumption that the densities S, are differentiable it follows that 
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,lim 2 
s 

Sp.D(DxpoDSi(ti)) dV = 
s 

n,.[SoDx(nK)&i dA, 
‘-f~p=lg 

P K 

where, here and in the sequel, a particular orientation for nK is chosen (so that nas, and nK 
coincide) and the jump is defined accordingly. 

We conclude therefore that 

fiG) = e”(ti> + s nK .I[SoDx (n,)lJli dA, 
K 

which, in light of the relation [[ut v2J = ((vl))[lu2~ + [[urJ((u2)), that holds for any two 
mappings ut and v2 in np CO(B,,, R3), can be rewritten as 

Ma) = i(k)+ s (UX~K>Il~~Dx~(nK)+ ((S(n,))).UDx(n,)D)lidA. 
K 

The representation of the power expended in bulk is 

A**(i)(fs) = r(i*(f))(s(ii)) = 2 /(sp.vp + S,.D(Q) dV, 
p=l 

BP 

where v = s(i) denotes the material velocity field. On appealing to the smoothness of sp 
and S, and Corollary 4.1, this expression leads to 

A**(i)(fB) =/B.vdV + /f.vdA 

B as 

+ J (UWMl49 - ((S(n,)~.UDx(n,)Dli)dA. K 
Here, b = Cp(sz - div Ss), with sg and Sz the zero extensions of sp and S, to B, and 
t = C, t;, where ti is the zero extension to 3 B of S&ran,). Combining this expression 
with the expression for the interfacial power expenditure and assuming that the interfacial 
forces can be represented by measures given in terms of the smooth densities c and c 
(allowing us to use the expressions obtained in Proposition 2.4), we obtain the following 
proposition. 

Proposition 7.1. If a force on a multiphase body can be represented by smooth stress 
measures, then that force admits the unique representation 

f(i()=Sb.“dV+S1.“dA+/(tli+f,((v)))dA 

B aB K 

in terms of the body force b, the surface force t, and the fields t and tK dejned on K and 
valued, respectively, in Iw and R3. Further; for f to be represented by piecewise smooth 
stress measures s, S, c, and c, we must have 
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b = s-divS onB, 
t = S(naB) onaB, 
tK = US(n,)ll OnK, 

391 

5 = c - div, c + t, . ((Dx (n,))) on K. 

Given a subbody P c B whose intersection with K is a submanifold of K, the force f, 
obtained by the restriction of the various measures to P admits the representation 

f,(j)=/b.vdV+[~+dA 1 (tti+t,.((v)))dA+ / tItidL. 

P ap PI-W amt 

where we now have the additional boundary condition t( = c. Y on a P no and the remaining 
fields satisfy the equations and boundary conditions determined above. 

Remark 7.1. From the expressions for the representations of the interfacial and bulk com- 
ponents of the force, we conclude that if a force is given by the fields T, b, t, and tK, the 
additional information needed to decompose that force into these components is the average 
stress on the interface. 
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